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Abstract—Graphical Model (GM) has provided a popular
framework for big data analytics because it often lends itself
to distributed and parallel processing by utilizing graph-based
‘local’ structures. It models correlated random variables where
in particular, the max-product Belief Propagation (BP) is the
most popular heuristic to compute the most-likely assignment
in GMs. In the past years, it has been proven that BP can solve
a few classes of combinatorial optimization problems under
certain conditions.

Motivated by this, we explore the prospect of using BP
to solve generic combinatorial optimization problems. The
challenge is that, in practice, BP may converge very slowly
and even if it does converge, the BP decision often violates
the constraints of the original problem. This paper proposes
a generic framework that enables us to apply BP-based
algorithms to compute an approximate feasible solution for
an arbitrary combinatorial optimization task. The main novel
ingredients include (a) careful initialization of BP messages,
(b) hybrid damping on BP updates, and (c) post-processing
using BP beliefs. Utilizing the framework, we develop parallel
algorithms for several large-scale combinatorial optimization
problems including maximum weight matching, vertex cover
and independent set. We demonstrate that our framework
delivers high approximation ratio, speeds up the process by
parallelization, and allows large-scale processing involving
billions of variables.

Keywords-Combinatorial optimization, Belief propagation,
Parallel algorithm, Maximum weighted matching

I. INTRODUCTION

Graphical Models (GMs) provide a useful framework

for modeling and processing real-world, large-scale data

applications. From traditional big data analytics, such as

page rank [1] and graph mining [2], to more recent deep

learning [3], graphical models have been commonly applied

for processing large-scale data-sets. GM is a particularly

good fit for big data applications because it lends itself

to fast parallel implementations by utilizing graph-based

‘local’ structures. Several modern programming models, such

as GraphLab [4], GraphChi [5] and GraphX [6], enable

distributed, parallel computation on GMs.

One of the most common computational tasks found in

GM’s applications is to compute the most-likely assign-

ment to random variables, so-called a MAP (Maximum-

A-Posteriori) estimate. This can be viewed as solving a large-

scale optimization problem, which is becoming increasingly

important for big data analytics since it presents a major

computational bottleneck. Motivated by this, we explore

*The first two authors contributed equally to this work.

the prospect of using GMs to solve optimization problems

at scale. In particular, we propose a message-passing based

algorithm to solve combinatorial optimization problems based

on Belief Propagation (BP). The (max-product) BP algorithm

is a well-studied heuristic that has been popularly used to

approximately solve MAP optimization tasks. It is an iterative,

message-passing algorithm proven to produce exact solutions

for tree structured GMs. However, understanding on the

performance of BP for loopy GMs has been quite limited.

Our goal is to design a highly accurate approximation

algorithm based on BP that solves generic large-scale

combinatorial optimization problems. The benefit of such

an algorithm is that it inherently lends itself to parallel

implementations, enabling fast performance and ensuring

scalability. However, the challenge is that the BP algorithm

is not guaranteed to be correct or even converge in general.

Even if it converges to the correct solution, its convergence

speed is too low for solving large-scale instances. Especially,

when there are multiple optima (multiple solutions), BP is

known to oscillate in many cases [7, 8, 9]. One can stop

BP iterations without waiting for convergence, but then BP

algorithms often produce infeasible solutions, i.e., violate the

constraints of the targeted combinatorial optimization.

Contribution. We resolve the issues by designing a generic

BP-based framework that computes highly accurate and

feasible approximation solutions. The basic idea is to use a

truncated BP algorithm in conjunction with existing heuristics

to enforce a feasible solution in a way that ensures high

approximation ratio. At a high level, the algorithm takes

the following steps. First, given an optimization problem,

we represent the problem in the MAP framework of GM.

Second, we run the corresponding BP’s message-passing and

‘partially’ solve the optimization problem. However, because

BP often does not converge quickly, we run only a fixed

number of BP iterations; we do not wait for convergence.

Instead, to boost up the quality of BP decisions, we (a)

carefully initialize the BP messages, (b) add a small noise

to weights, and (c) apply a hybrid damping strategy on

BP message updates (Section III-B). Finally, we apply

existing heuristics as post-processing procedures to enforce

the feasibility of the BP decision. In particular, we run known

heuristics for a given combinatorial optimization problem by

replacing the parameters of the original problems (e.g., edge

weights) with BP beliefs. This ensures that the framework

is applicable to any combinatorial optimization problems,
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while achieving a higher approximation ratio than existing

heuristics.

In summary, this paper makes three key contributions:

1) Practical BP-based algorithm design: To the best

of our knowledge, this paper is the first to propose a

generic concept for designing BP-based algorithms that

solve large-scale combinatorial optimization problems.

2) Parallel implementation: We also demonstrate that

the algorithm is easily parallelizable. For the maximum

weighted matching problem, this translates to 71x speed

up while sacrificing only 0.1% accuracy compared to

the state-of-art exact algorithm [10].

3) Extensive empirical evaluation: We evaluate our al-

gorithms on three different combinatorial optimization

problems on diverse synthetic and real-world data-sets.

Our evaluation shows that the framework shows higher

accuracy compared to other known heuristics.

Related Work. In the past years, the convergence and

correctness of BP has been studied analytically for several

classical combinatorial optimization problems, including

matchings [7, 11, 12], perfect matchings [13], shortest paths

[8], independent sets [14], network flows [9] and vertex

covers [15]. The important common feature of these models

is that BP converges to a correct assignment when the

linear programming (LP) relaxation of the combinatorial

optimization is tight, i.e., when it shows no integrality

gap. However, LP tightness is an inevitable condition to

guarantee the convergence of BP to the optimal solution,

which is the main limitation of these theoretical studies

towards wider applicability. Moreover, even if BP converges

to the optimal solution, its convergence speed is often too

slow for solving large-scale instances. There have been

also empirical studies of BP-based algorithms for specific

combinatorial optimization instances, including traveling

salesman [16], graph partitioning [16], Steiner tree [17] and

network alignment [18]. However, their focuses are not on

large-scale instances and the running times of the proposed

algorithms typically grow super-linearly with respect to the

input size. In contrast, we provide a generic framework

on designing BP-based scalable, parallel algorithms that

are widely applicable to arbitrary large-scale combinatorial

optimization problems.

Organization. We provide backgrounds on BP and com-

binatorial optimization problems in Section II. Section III

describes our BP-based algorithm design, and Section IV

provides details on its parallel implementation. We evaluate

our algorithm on several combinatorial optimization problems

in Section V. Finally, we conclude in Section VI.

II. PRELIMINARIES

A. Graphical Model and Belief Propagation

A joint distribution of n (binary) random variables Z =
[Zi] ∈ {0, 1}n is called a Graphical Model (GM) if it

factorizes as follows: for z = [zi] ∈ {0, 1}n,

Pr[Z = z] ∝
∏

i∈{1,...,n}
ψi(zi)

∏
α∈F

ψα(zα),

where {ψi, ψα} are non-negative functions, so-called factors;

F is a collection of subsets

F = {α1, α2, ..., αk} ⊂ 2{1,2,...,n}

(each αj is a subset of {1, 2, . . . , n} with |αj | ≥ 2); zα
is the projection of z onto dimensions included in α.1 In

particular, ψi is called a variable factor. Assignment z∗ is

called a maximum-a-posteriori (MAP) assignment if z∗ =
argmaxz∈{0,1}n Pr[z]. This means that computing a MAP

assignment requires us to compare Pr[z] for all possible z,

which is typically computationally intractable (i.e., NP-hard)

unless the induced bipartite graph of factors F and variables

z, the so-called factor graph, has a bounded tree width [19].
The max-product belief propagation (BP) is a popular

heuristic for approximating the MAP assignment in GM. BP

is implemented iteratively; at each iteration t, BP maintains

four messages {mt
α→i(c),m

t
i→α(c) : c ∈ {0, 1}} between

every variable zi and every associated α ∈ Fi, where Fi :=
{α ∈ F : i ∈ α}. The messages are updated as follows:

mt+1
α→i(c) = max

zα:zi=c
ψα(zα)

∏
j∈α\i

mt
j→α(zj) (1)

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

mt
α′→i(c). (2)

One can reduce the complexity of messages by combining

(1) and (2) as:

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

max
zα′ :zi=c

ψα′(zα′)
∏

j∈α′\i
mt

j→α′(zj).

Given a set of messages {mi→α(c),mα→i(c) : c ∈ {0, 1}},
the so-called BP marginal beliefs are computed as follows:

bi[zi] = ψi(zi)
∏

α∈Fi
mα→i(zi). (3)

This BP algorithm outputs zBP = [zBP
i ] where

zBP
i =

⎧⎪⎪⎨
⎪⎪⎩
1 if bi[1] > bi[0]

? if bi[1] = bi[0]

0 if bi[1] < bi[0]

.

It is known that zBP converges to a MAP assignment after

a sufficient number of iterations, if the factor graph is a tree

and the MAP assignment is unique. However, if the graph

contains cycles or MAP is not unique, the BP algorithm is

not guaranteed to converge to a MAP assignment in general.

B. Belief Propagation for Combinatorial Optimization
The max-product BP can be applied to compute an

approximate solution for any ‘discrete’ optimizations. This

1For example, if z = [0, 1, 0] and α = {1, 3}, then zα = [0, 0].
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section describes the maximum weight matching problem as

an example. Given a graph G = (V,E) and edge weights

w = [we] ∈ R
|E|, it finds a set of edges such that each

vertex is connected to at most one edge in the set and the

sum of edge weights in the set is maximized. The problem

is formulated as the following IP (Integer Programming):

maximize w · x
s.t.

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V, x = [xe] ∈ {0, 1}|E|, (4)

where δ(v) is the set of edges incident to vertex v ∈ V .

Now consider the following GM: for x = [xe] ∈ {0, 1}|E|,

Pr[X = x] ∝
∏
e∈E

ewexe

∏
v∈V

ψv(xδ(v)), (5)

where
ψv(xδ(v)) =

{
1 if

∑
e∈δ(v) xe ≤ 1

0 otherwise
.

One can easily observe that the MAP assignments for GM (5)

correspond to the (optimal) solution of IP (4). Therefore, one

can use the max-product BP for solving the maximum weight

matching problem, where the algorithm can be simplified

using ai→j = log
mi→(i,j)(0)

mi→(i,j)(1)
as described in Algorithm 1.

Algorithm 1 BP for Maximum Weight Matching

(ITERATION) Calculate new messages as follows:

at+1
i→j ← max

k∈δ(i)\{j}

{
max

{
wik − at

k→i, 0
}}

(DECISION) For each edge e = (i, j) ∈ E, decide

xe =

⎧⎪⎨
⎪⎩
1 if (ai→j + aj→i) < we

? if (ai→j + aj→i) = we

0 if (ai→j + aj→i) > we

.

Note that one can design similar BP algorithms for arbitrary

combinatorial optimization problems (e.g., minimum weight

vertex cover and maximum weight independent set) as we

demonstrate in Section V.

III. ALGORITHM DESIGN

The main goal of this paper is to design BP-based parallel

algorithms for solving combinatorial optimizations. To this

end, one can design a BP algorithm as described in Section

II-B. However (a) it might diverge or converge very slowly,

(b) even if it converges quickly, the BP decision might be not

correct, and (c) even worse, BP might produce an infeasible

solution, i.e., it does not satisfy the constraints of the problem.

To address these issues, we propose a generic BP-

based framework that provides highly accurate approximate

solutions for combinatorial optimization problems. The

framework has two steps, as shown in Figure 1. In the

first phase, it runs a BP algorithm for a fixed number of

iterations without waiting for convergence. Then, the second

phase runs a known heuristic using BP beliefs instead of the

original weights to output a feasible solution. Namely, the

first and second phases are respectively designed for ‘BP

weight transforming’ and ‘post-processing’. In the following

sections, we describe the two phases in more detail in reverse

order. For illustration purposes, we focus on the maximum

weight matching problem while the results are derived using

Erdős–Rényi random graphs with 1000 vertices, average

degree 100, and edge weights drawn from the uniform

distribution over the interval [0, 1]. Later in Section V,

we demonstrate the framework is applicable to any other

combinatorial optimization problems.

A. Post-Processing Phase.

The decision on BP beliefs might give an infeasible

solution. For example, in the maximum weight matching

problem, BP decides xe = 0, 1 based on the sign of

wij − (ai→j + aj→i) (see Algorithm 1), but the edges of

xe = 1 might not form a matching even if BP converges,

i.e., there exists a vertex v such that
∑

e∈δ(v) xe > 1.

To resolve the issue, we use post-processing by utilizing

existing heuristics to the given problem that find a feasible

solution. Applying post-processing ensures that the solution

is at least feasible. In addition, our key idea is to replace the

original weights by the logarithm of BP beliefs, i.e., the new

weight on edge e becomes: wij − (ai→j + aj→i). After this,

we apply known heuristics using the logarithm of BP beliefs

to achieve higher accuracy.

For example, the following ‘local’ greedy algorithm can

be used as a post-processing mechanism:

1. Initially, all vertices are ‘unmatched’, i.e., xe = 0 for

all e ∈ E.

2. Choose an arbitrary unmatched vertex i and match it

to an unmatched vertex j �= i having the highest value

in wij − (ai→j + aj→i), i.e., set xij = 1.

3. Keep iterating step 2 until no more vertex can be

matched.

To confirm the effectiveness of the proposed post-processing

mechanism, we compare it with the following two alternative

post-processing schemes that remove edges to enforce

matching after BP processing in a naive manner:

• Random: If there exists a vertex v such that∑
e∈δ(v) xe > 1 on the BP decision, randomly select

one edge and remove other edges.

• Weight: If there exists a vertex v such that
∑

e∈δ(v) xe >
1 on the BP decision, remove edges of smaller weight.

Figure 3(a) compares the approximation ratio obtained

using BP-belief-based post-processing versus the naive post-

processing heuristics (random and weight). It shows that

the proposed BP-belief-based post-processing outperforms

the rest. Note, the results in Figure 3 were obtained by

first applying BP message passing for weight transformation.

Next, we explain how this is done in our framework.
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Figure 1: Overview of our generic BP-based framework
Figure 2: Effects of initial messages on the

number of BP iterations. We set
a0i→j = a0j→i = c · wij for a value c of x-axis.

(a) (b) (c)
Figure 3: (a) Average approximation ratio for different post-processing schemes. We use a local greedy algorithm as a post-processing based on original
weights and BP messages (i.e., beliefs). The ‘Random selection’ post-processing is also compared. (b) Effects of initial messages on the convergence of BP.

We set a0i→j = a0j→i = c · wij for the value c of x-axis (c) Approximation ratio for different initial messages a0i→j = a0j→i = 0, wij/2, wij

B. BP Weight Transforming Phase

To improve the approximation quality and solve the

convergence issues, we use three modifications to the standard

BP algorithm: (1) careful initialization on messages, (2) noise

addition and (3) hybrid damping on message updates.

Message Initialization. The standard message initialization

is m0
α→i = m0

i→α = 1, i.e., a0i→j = 0 for the maximum

weight matching problem (see Algorithm 1). The convergence

rate of BP depends on the initialized messages. As reported

in Figure 3(b), we try different initializations, a0i→j = c ·wij

for 0 ≤ c ≤ 1, where the case c = 0.5 shows the fastest

convergence. The main intuition we found for explaining

such a phenomenon is as follows. If a0i→j = wij/2, the BP

decision at the initial step is neutral, i.e., xe =?, since a0i→j+
a0j→i = wij . On the other hand, if a0i→j = 0, BP chooses

xe = 1 initially for all edges and most likely does xe = 0 for

most edges in the next step, i.e., it keeps oscillating between

xe = 1 and xe = 0 for a while. The choice a0i→j = wij/2
alleviates the fluctuation behavior of BP and boosts up its

convergence speed.

We remind that, under our framework, BP runs only

for a fixed number of iterations since it might converge

too slowly, even with the initialization a0i→j = wij/2, for

practical purposes. With fixed number of iterations, careful

initialization becomes even more critical as experimental

results in Figure 3(c) and Figure 2 suggest. For example, if

one runs 5000 iterations of BP, they show that the standard

initialization (a0i→j = 0) achieves at most 30% approximation

ratio, while the proposed method (a0i→j = wij/2) achieves

99%. Moreover, one can also observe that the advantage

of more BP updates diminishes as the number of iterations

# vertices Approximation Ratio
Difference

(# edges) Multiple optima Unique optimum

1k (50k) 99.88 % 99.90 % -0.02 %

5k (250k) 99.86 % 99.85 % +0.01 %

10k (500k) 99.85 % 99.84 % +0.01 %

20k (1M) 99.84 % 99.83 % +0.01 %

Table I: Approximation ratio of BP for MWM with multiple optima and
a unique optimum. We introduce a small noise to the edge weights and set

the initial message by a0i→j = a0j→i = wij/2.

becomes large. The observation holds for much larger graphs.

Thus, we only run 100 BP iterations in our algorithm and

do not wait for BP’s convergence.

Noise Addition. The BP algorithm often oscillates when

the MAP solution is not unique. To address this issue, we

transform the original problem to one that has a unique

solution with high probability by adding small noises to the

weights, i.e., we ← we + re, where re ∈ [−r, r] is a random

number chosen independently across edges. We apply this to

all cases. Here, one has to be careful in deciding the range

r of noises. If re is too large, the quality of BP solution

deteriorates because the optimal solution might have changed

from the original problem. On the other hand, if re is too

small compared to we, BP converges very slowly. To achieve

a balance, we choose the range r of noise re as 10% of the

minimum distance among weights. We find that this results

in over 99.8% approximation ratio even when the solution

is not unique, which has little difference with that of unique

solution as shown in Table I.

Hybrid Damping. To boost up the convergence speed of

BP updates further, we use a specific damping strategy to

alleviate message oscillation. We update messages to be the
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# vertices

(# edges)

Approximation Ratio

no-damp(100) damp(100)
no-damp(50) damp(50)

+damp(50) +no-damp(50)

10k (500k) 99.58 % 99.69 % 99.83 % 99.56 %

20k (1M) 99.55 % 99.68 % 99.82 % 99.56 %

50k (2.5M) 99.56 % 99.69 % 99.83 % 99.57 %

100k (5M) 99.56 % 99.69 % 99.83 % 99.57 %

Table II: Approximation ratio of BP without damping, BP with damping,
BP with damping only for first 50 iterations, and BP with damping for last
50 iterations. We introduce a small noise to the edge weights and set the

initial message by a0i→j = a0j→i = wij/2.

average of old and new messages.

at+1
i→j ← max

k∈δ(i)\{j}

{
max

{
wik − atk→i, 0

}}
at+1
i→j ← (ati→j + at+1

i→j)/2.

We note that the damping strategy provides a similar effect as

our proposed initialization a0i→j = wij/2. Hence, if one uses

both, the effect of one might be degraded due to the other. Due

to this, we first run the half of BP iterations without damping

(this is for keeping the effect of the proposed initialization)

and perform the last half of BP iterations with damping.

As reported in Table II, this hybrid approach outperforms

other alternatives, including (a) no use of damping, (b) using

damping in every iteration, and (c) damping in the first half

of BP iterations and no-damping in the last half.

IV. PARALLEL DESIGN AND IMPLEMENTATION

This section addresses issues in parallelization of our

algorithm. First, we introduce asynchronous message up-

date that enables efficient parallelization of BP message

passing. Second, we illustrate the issues in parallelizing post-

processing. Finally, we describe the parallel implementations

of our algorithm and their benefits.

A. Asynchronous Message Update

So far, we have assumed that there is only one thread, and

BP messages are updated synchronously among vertices after

calculating new message values. Thus, each iteration consists

of two phases: message calculation phase and message update

phase.

For parallelization, we first divide the graph by partitioning

the vertices, and assign each partition to a single thread (see

Section IV-C for details). However, if we naively parallelize

the process using multiple threads, frequent synchronization

may incur large overhead. Thus, we apply asynchronous

message update where each vertex updates the message value

right after new message value is calculated and eliminate

synchronization point between iterations. This makes the

process faster because of the reduced synchronization points.

Figure 4 shows that performance improvement (speed up in

running time) of asynchronous update over synchronous

is up to 237% in our example graph for the maximum

weight matching problem with 16 threads2; we leave detailed

2We use a machine with two Intel Xeon(R) CPU E5-2690 @ 2.90GHz
each with 8 cores.

evaluation in Section V.

We now discuss its impact on approximation quality.

Two factors marginally affect the approximation quality in

opposite directions. First, updating the message value of each

vertex right after its message calculation marginally improves

the approximation ratio, as shown in Figure 5. Updating a

message right after its calculation on a individual vertex

basis implicitly has a similar effect to applying an additional

iteration, which improves the quality. Second, having multiple

threads run without synchronizing across iterations marginally

degrade the approximation quality. The reason is that some

threads run faster than others, and messages from the slower

threads are not updated as frequently. We quantify this effect

in Figure 5 and find that the impact is marginal; we still

achieve 99.9% accuracy with multiple threads.

In summary, using asynchronous message updates, we

speed up the run-time of the algorithm by up to 240%,

while achieving 99.9% approximation ratio. In Section V,

we show that the results also extend to other combinatorial

optimization problems.

B. Local Post-Processing

The second phase of our algorithm runs existing heuristics

for post-processing to enforce the feasibility of BP decisions.

While the framework works with any heuristics-based post-

processing methods, for the entire process to be parallel, it

is important that the post-processing step is also parallel. An

important criterion for efficient parallelization is locality of

computation; if the post-processing heuristics can compute

the result locally without requiring global knowledge, they

can be easily parallelized. Moreover, if they do not require

synchronization, the running time can be further reduced.

Fortunately, for most combinatorial optimization problems

heuristics that match the two criteria exist. A local greedy

algorithm, for example, enables local post-processing (i.e.,

it does not require global information). and require little

synchronization. As reported in Section V, we also evaluate

our algorithm in conjunction with other post-processing

heuristics to demonstrate its flexibility.

C. Parallel Implementation

The BP algorithm is easy to parallelize because of its

message passing nature. To demonstrate this, we parallelize

our BP-based framework using three platforms:

• GraphChi enables large-scale graph computation on a

personal computer by utilizing disk drive [5]. Using

its API, we specify the BP message update rules to

enable parallel message updates and scale the size of

the problem up to billions of variables.

• OpenMP is a task-based parallelization library developed

by Intel. Simply putting OpenMP pragma directive

enables the compiler to support parallel computation.

• For our pthread-based implementation, we divide a

single BP iteration into the smaller execution blocks
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Figure 4: Average running time of our BP-based
algorithm with synchronous message update and
asynchronous message update. We apply all three

modifications to BP of Section III-B.

Figure 5: Approximation ratio of our BP-based
algorithm with synchronous and asynchronous message

update with 16 threads. We apply all three
modifications to BP of Section III-B.

# Vertices # Edges
apache1 80k 230k
apache2 715k 2M
ecology2 1M 2M
G3_circuit 1.6M 3M
bone010 1M 23.4M

Table III: Summary of MWM
data-sets

# Vertices
Optimal Cost
MVC MIS

frb-30-15 450 420 30
frb-45-21 945 900 45
frb-53-24 1,272 1,219 53
frb-59-26 1,534 1,475 59

Table IV: Summary of MWVC
and MWIS data-sets

called tasks. Each iteration is divided into per-thread

tasks. Because we have fixed multiple number of BP

iterations, it concerns many more tasks. We put these

tasks in a task queue. Initially all threads are assigned

a task and the thread finished its task will be assigned

the next task in the task queue. This minimizes the

overlap between different iterations and synchronization

points, which reduces the run time while obtaining high

approximation ratio.

Algorithm 2 BP for Minimum Weight Vertex Cover

(ITERATION) Calculate new messages as follows:

at+1
i→j ← min

⎧⎨
⎩wv +

∑
k∈δ(i)\{j}

at
k→i, 0

⎫⎬
⎭

(DECISION) For each vertex i ∈ V , decide

xi =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∑
j∈δ(i) aj→i < −wi

? if
∑

j∈δ(i) aj→i = −wi

0 if
∑

j∈δ(i) aj→i > −wi

Algorithm 3 BP for Maximum Weight Independent Set

(ITERATION) Calculate new messages as follows:

at+1
i→j ← max

⎧⎨
⎩wv −

∑
k∈δ(i)\{j}

at
k→i, 0

⎫⎬
⎭

(DECISION) For each vertex i ∈ V , decide

xi =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∑
j∈δ(i) aj→i < wi

? if
∑

j∈δ(i) aj→i = wi

0 if
∑

j∈δ(i) aj→i > wi

V. EVALUATION

We evaluate our BP framework using three popular combi-

natorial optimization problems: maximum weight matching,

minimum weight vertex cover and maximum weight indepen-

dent set problem. We perform extensive empirical evaluation

to demonstrate the benefit of our algorithm for the following

three questions:

1) Does the BP-based algorithm provide high approxima-
tion ratio?

2) Can the algorithm achieve speed-up due to parallel
implementations?

3) Can it solve large-scale problems involving billions of
variables?

We already introduced the IP formulation of the maximum

weight matching (MWM) in (4), where those of the mini-

mum weight vertex cover (MWVC) and maximum weight

independent set problem (MWIS) are as follows:

MWVC: minimize w · x
subject to xu + xv ≥ 1, ∀e = (u, v) ∈ E

x = [xv] ∈ {0, 1}|V | (6)

MWIS: maximize w · x
subject to xu + xv ≤ 1, ∀e = (u, v) ∈ E

x = [xe] ∈ {0, 1}|V |. (7)

We provide descriptions of BP algorithms in Algorithm 2–3

for MWVC and MWIS. As we propose in Section III-B, we

choose initial BP messages for neutral decisions: a0j→i =
−wij/|δ(i)| for vertex cover and a0j→i = wij/|δ(i)| for

independent set.

A. Experiment Setup

In our experiments, both real-world and synthetic data-

sets are used for evaluation. For MWM, we used data-sets

from the university of Florida sparse matrix collection [20]

summarized in Table III. For larger scale synthetic evaluation,

we generate Erdős-Rényi random graphs (up to 50 million

vertices with 2.5 billion edges) with average vertex degree of

100 with edge weights drawn independently from the uniform

random distribution over the interval [0, 1]. For MWVC

and MWIS, we use the frb-series from BHOSLIB [21]

summarized in Table IV, where it also contains the optimal

solutions. We note that we perform no experiment using

synthetic data-sets for MWVC and MWIS since they are

NP-hard problems, i.e., impossible to compute the optimal

solutions. On the other hand, for MWM the Edmonds’

Blossom algorithm [10] can compute the optimal solution

in polynomial time. All experiments in this section are

conducted on a machine with Intel Xeon(R) CPU E5-2690

@ 2.90GHz with 8 cores and 8 hyperthreads with 128GB of

memory, unless otherwise noted.
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Approximation Ratio
Serial BP Parallel BP
(1 thread) (16 threads)

Synthetic
# vertices
(# edges)

500k (25M) 99.93 % 99.90 %
1M (50M) 99.93 % 99.90 %
2M (100M) 99.94 % 99.91 %
5M (250M) 99.93 % 99.90 %
apache1 100.0 % 100.0 %

Real-world apache2 100.0 % 100.0 %
Data-set ecology2 100.0 % 100.0 %
(Florida) G3_circuit 99.95 % 99.95 %

bone010 99.11 % 99.12 %

Table V: MWM: Approximation ratio of our BP-based algorithm on
synthetic and sparse matrix collection data-sets [20].

Figure 6: MWVC: Average approximation ratio of our BP-based
algorithm, the 2-approximation algorithm and the greedy algorithm on

frb-series data-sets.

B. Approximation Ratio

We now demonstrate our BP-based approximation algo-

rithm produces highly accurate results. In particular, we

show that our BP-based algorithms outperform well-known

heuristics for MWVC, MWIS and closely approximate exact

solutions for MWM for all cases we evaluate.

Maximum Weight Matching. For MWM, we compare the

approximation qualities of serial, synchronous BP (i.e., one

thread) in Section III and parallel, asynchronous imple-

mentation (i.e., using multiple threads) in Section IV on

both synthetic and real-world data-sets, where we compute

the optimal solution using the Blossom algorithm [10] to

measure the approximation ratios. Table V summarize our

experimental results for MWM for the synthetic data-sets

and the Florida data. Our BP-based algorithm achieves 99%

to 99.9% approximation ratios.

Minimum Weight Vertex Cover. For MWVC, we use two

post-processing procedures: greedy and 2-approximation

algorithm [22]. For the local greedy algorithm, we choose

a random edge and add one of its adjacent vertices with a

smaller weight until all edges are covered. We compare the

approximation qualities of our BP-based algorithm compared

to the cases when one uses only the greedy algorithm and the

2-approximation algorithm. Figure 6 shows the experimental

results for the two post-processing heuristics. The results

show that our BP-based weight transformation enhances the

approximation quality of known approximation heuristics by

up to 43%.

Figure 7: MWIS: Average approximation ratio of our BP-based
algorithm and the greedy algorithm on frb-series data-sets.

Maximum Weight Independent Set. For MWIS, the exper-

iment was performed on frb-series data-sets. We use a greedy

algorithm as the post-processing procedure, which selects

vertices in the order of higher weights until no vertex can

be selected without violating the independent set constraint.

We compare the approximation qualities of our BP-based

algorithm and the standard greedy algorithm. Figure 7 shows

that our BP-based framework enhances the approximation

ratio of the solution by 2% to 23%.

C. Parallelization Speed-up
One of the important advantages of our BP-based algorithm

is that it is fast, while delivering high approximation

guarantees. In this section, we focus on the speed-up due

to parallelization. Figure 8 compares the running time of

the Blossom algorithm and our BP-based algorithm with

1 single core and 16 cores. With five million vertices,

our asynchronous parallel implementation is eight times

faster than the synchronous serial implementation, while

still retaining 99.9% approximation ratio as reported in

Table V. To demonstrate the overall benefit in context, we

compare its running time with that of the current fastest

implementation of the Blossom algorithm due to Kolmogorov

[10]. Here, we note that the Blossom algorithm is inherently

not easy to parallelize. For parallel implementation, we report

results for our pthread implementation , but the OpenMP

implementation also show comparable performance. For

20 million vertices (one billion edges), it shows that the

running time of our algorithm can be accelerated by up

to 71 times than the Blossom algorithm, while sacrificing

0.1% of accuracy. The running time gap is expected be

more significant for larger graphs since the running times

of our algorithm and the Blossom algorithm are linear and

cubic with respect to the number of vertices, respectively.

We also experiments our algorithms for other problems to

demonstrate the parallelization speedup. Due to the space

limitation, we only report that for the minimum weight vertex

cover problem in Figure 9.

D. Large-scale Optimization
Our algorithm can also handle large-scale instances be-

cause it is based on GMs that inherently lend itself to parallel

and distributed implementations. To demonstrate this, we

create a large-scale instance containing up to 50 million

vertices and 2.5 billion edges. We experiment our algorithm



31

Figure 8: MWM: Running time of Blossom
algorithm and our BP-based algorithms.

5.88 

5.43 

5.13 5.03 

5.52 

1 

10 

100 

1,000 

10,000 

5k 100k 

Sp
ee

d 
U

p 

R
un

ni
ng

 T
im

e 
(s

ec
) 

10k 20k 50k  

BP Serial BP Parallel Speed Up BP Serial
(1 Thread)

BP Parallel
(16 Threads)

umber of Vertices 

Figure 9: MWVC: Running time of our
parallel BP-based algorithm (pthread

implementation) on large-scale graphs.

Figure 10: MWM and MWVC: Running time
and memory usage of GraphChi-based
implementation on large-scale graphs.

using GraphChi on a single consumer level machine with i7

CPU and 24GB of memory. Figure 10 shows the running time

and memory usage of our algorithm for MWM and MWVC

on large data-sets. For large graphs, GraphChi partitions

them to load parts of them in memory, while storing the rest

on disk by leveraging graph-based ‘local’ structures. Thus,

we were able to solve problems with 2.5 billion edges on a

single machine. In contrast, Kolmogorov’s implementation

[10] of the Blossom algorithm cannot handle such large

graphs because distributed processing is difficult (e.g., it

cannot handle more than 6M vertices on the same machine).

Similarly, our algorithm can be run on multiple machines

to scale to even larger problems. However, we leave this as

future work.
VI. CONCLUSION

This paper explores the possibility of applying the BP

algorithm to solve generic combinatorial optimizations at

scale. We propose BP-based algorithm that achieves high

approximation ratio and allows parallel implementation.

We evaluate the algorithm’s effectiveness and performance

by applying our framework on three popular combinato-

rial optimization problems. Our evaluation shows that the

algorithm outperforms existing approximation algorithms

across many instances and is able to solve large-scale

problems with billions of variables. We believe our BP-

based framework is of broader interest for a wider class of

large-scale optimization tasks.
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